Diagnosing Multistage Manufacturing Processes With Engineering-Driven Factor Analysis Considering Sampling Uncertainty
نویسندگان
چکیده
A new engineering-driven factor analysis (EDFA) method has been developed to assist the variation source identification for multistage manufacturing processes (MMPs). The proposed method investigated how to fully utilize qualitative engineering knowledge of the spatial variation patterns to guide the factor rotation. It is shown that ideal identification can be achieved by matching the rotated factor loading vectors with the qualitative indicator vectors (IV) that are defined according to spatial variation patterns based on the design constraints. However, the random sampling variability may significantly affect the estimation of the rotated factor loading vectors, leading to the deviations from their true values. These deviations may change the matching results and cause misidentification of the actual variation sources. By using implicit differentiation approach, this paper derives the asymptotic distribution and the associated variance-covariance matrix of the rotated factor loading vectors. Therefore, by considering the effect of sample estimation variability, the variation sources identification problem is reformulated as an asymptotic statistical test of the hypothesized match between the rotated factor loading vectors and the indicator vectors. A real-world case study is provided to demonstrate the effectiveness of the proposed matching method and its robustness to the sample uncertainty. [DOI: 10.1115/1.4024661]
منابع مشابه
Partial inspection problem with double sampling designs in multi-stage systems considering cost uncertainty
The nature of input materials is changed as long as the product reaches the consumer in many types of manufacturing processes. In designing and improving multi-stage systems, the study of the steps separately may not lead to the greatest possible improvement in the whole system, therefore the study of inputs and outputs of each stage can be effective in improving the output quality characterist...
متن کاملEngineering Driven Cause-effect Modeling and Statistical Analysis for Multi-operational Machining Process Diagnosis
Process fault identification for product quality improvement is a critical issue in both design and manufacturing, especially for multistage manufacturing processes. In this paper, an integrated approach is proposed to develop cause-effect models from engineering knowledge and to conduct associated statistical analysis of the measurement data. First, a cause-effect diagram and predicted symptom...
متن کاملMonitoring and Diagnosing Multistage Processes: A Review of Cause Selecting Control Charts
A review of the literature on cause selecting charts (CSCs) in multistage processes is given, with a concentration on developments which have occurred since 1993. Model based control charts and multiple cause selecting charts (MCSCs) are reviewed. Several articles based on normally and non-normally distributed outgoing quality characteristics are analyzed and important issues such as economic d...
متن کاملTask-space Control of Electrically Driven Robots
Actuators of robot operate in the joint-space while the end-effect or of robot is controlled in the task-space. Therefore, designing a control system for a robotic system in the task-space requires the jacobian matrix information for transforming joint-space to task-space, which suffers from uncertainties. This paper deals with the robust task-space control of electrically driven robot manipula...
متن کاملMulti-Objective Lead Time Control in Multistage Assembly Systems (TECHNICAL NOTE)
In this paper we develop a multi-objective model to optimally control the lead time of a multistage assembly system. The multistage assembly system is modeled as an open queueing network, whose service stations represent manufacturing or assembly operations. The arrival processes of the individual parts of the product, which should be assembled to each other in assembly stations, are assumed to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013